Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cancer Epidemiol Biomarkers Prev ; 32(6): 748-759, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-20242353

ABSTRACT

BACKGROUND: Studies have shown an increased risk of severe SARS-CoV-2-related (COVID-19) disease outcome and mortality for patients with cancer, but it is not well understood whether associations vary by cancer site, cancer treatment, and vaccination status. METHODS: Using electronic health record data from an academic medical center, we identified a retrospective cohort of 260,757 individuals tested for or diagnosed with COVID-19 from March 10, 2020, to August 1, 2022. Of these, 52,019 tested positive for COVID-19 of whom 13,752 had a cancer diagnosis. We conducted Firth-corrected logistic regression to assess the association between cancer status, site, treatment, vaccination, and four COVID-19 outcomes: hospitalization, intensive care unit admission, mortality, and a composite "severe COVID" outcome. RESULTS: Cancer diagnosis was significantly associated with higher rates of severe COVID, hospitalization, and mortality. These associations were driven by patients whose most recent initial cancer diagnosis was within the past 3 years. Chemotherapy receipt, colorectal cancer, hematologic malignancies, kidney cancer, and lung cancer were significantly associated with higher rates of worse COVID-19 outcomes. Vaccinations were significantly associated with lower rates of worse COVID-19 outcomes regardless of cancer status. CONCLUSIONS: Patients with colorectal cancer, hematologic malignancies, kidney cancer, or lung cancer or who receive chemotherapy for treatment should be cautious because of their increased risk of worse COVID-19 outcomes, even after vaccination. IMPACT: Additional COVID-19 precautions are warranted for people with certain cancer types and treatments. Significant benefit from vaccination is noted for both cancer and cancer-free patients.


Subject(s)
COVID-19 , Colorectal Neoplasms , Hematologic Neoplasms , Kidney Neoplasms , Lung Neoplasms , Humans , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Hospitalization , Vaccination
2.
J Health Soc Sci ; 5(2): 231-240, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1989939

ABSTRACT

Recent media articles have suggested that women-led countries are doing better in terms of their responses to the COVID-19 pandemic. We examine an ensemble of public health metrics to assess the control of COVID-19 epidemic in women-versus men-led countries worldwide based on data available up to June 3. The median of the distribution of median time-varying effective reproduction number for women- and men-led countries were 0.89 and 1.14 respectively with the 95% two-sample bootstrap-based confidence interval for the difference (women - men) being [-0.34, 0.02]. In terms of scale of testing, the median percentage of population tested were 3.28% (women), 1.59% (men) [95% CI: (-1.29%, 3.60%)] with test positive rates of 2.69% (women) and 4.94% (men) respectively. It appears that though statistically not significant, countries led by women have an edge over countries led by men in terms of public health metrics for controlling the spread of the COVID-19 pandemic worldwide.

3.
PLoS One ; 17(7): e0269017, 2022.
Article in English | MEDLINE | ID: covidwho-1957099

ABSTRACT

Since the beginning of the Coronavirus Disease 2019 (COVID-19) pandemic, a focus of research has been to identify risk factors associated with COVID-19-related outcomes, such as testing and diagnosis, and use them to build prediction models. Existing studies have used data from digital surveys or electronic health records (EHRs), but very few have linked the two sources to build joint predictive models. In this study, we used survey data on 7,054 patients from the Michigan Genomics Initiative biorepository to evaluate how well self-reported data could be integrated with electronic records for the purpose of modeling COVID-19-related outcomes. We observed that among survey respondents, self-reported COVID-19 diagnosis captured a larger number of cases than the corresponding EHRs, suggesting that self-reported outcomes may be better than EHRs for distinguishing COVID-19 cases from controls. In the modeling context, we compared the utility of survey- and EHR-derived predictor variables in models of survey-reported COVID-19 testing and diagnosis. We found that survey-derived predictors produced uniformly stronger models than EHR-derived predictors-likely due to their specificity, temporal proximity, and breadth-and that combining predictors from both sources offered no consistent improvement compared to using survey-based predictors alone. Our results suggest that, even though general EHRs are useful in predictive models of COVID-19 outcomes, they may not be essential in those models when rich survey data are already available. The two data sources together may offer better prediction for COVID severity, but we did not have enough severe cases in the survey respondents to assess that hypothesis in in our study.


Subject(s)
COVID-19 , Electronic Health Records , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Self Report , Surveys and Questionnaires
4.
Sci Adv ; 8(24): eabp8621, 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1901906

ABSTRACT

India experienced a massive surge in SARS-CoV-2 infections and deaths during April to June 2021 despite having controlled the epidemic relatively well during 2020. Using counterfactual predictions from epidemiological disease transmission models, we produce evidence in support of how strengthening public health interventions early would have helped control transmission in the country and significantly reduced mortality during the second wave, even without harsh lockdowns. We argue that enhanced surveillance at district, state, and national levels and constant assessment of risk associated with increased transmission are critical for future pandemic responsiveness. Building on our retrospective analysis, we provide a tiered data-driven framework for timely escalation of future interventions as a tool for policy-makers.

7.
BMC Infect Dis ; 21(1): 533, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261265

ABSTRACT

BACKGROUND: Many popular disease transmission models have helped nations respond to the COVID-19 pandemic by informing decisions about pandemic planning, resource allocation, implementation of social distancing measures, lockdowns, and other non-pharmaceutical interventions. We study how five epidemiological models forecast and assess the course of the pandemic in India: a baseline curve-fitting model, an extended SIR (eSIR) model, two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-mechanistic Bayesian hierarchical model (ICM). METHODS: Using COVID-19 case-recovery-death count data reported in India from March 15 to October 15 to train the models, we generate predictions from each of the five models from October 16 to December 31. To compare prediction accuracy with respect to reported cumulative and active case counts and reported cumulative death counts, we compute the symmetric mean absolute prediction error (SMAPE) for each of the five models. For reported cumulative cases and deaths, we compute Pearson's and Lin's correlation coefficients to investigate how well the projected and observed reported counts agree. We also present underreporting factors when available, and comment on uncertainty of projections from each model. RESULTS: For active case counts, SMAPE values are 35.14% (SEIR-fansy) and 37.96% (eSIR). For cumulative case counts, SMAPE values are 6.89% (baseline), 6.59% (eSIR), 2.25% (SAPHIRE) and 2.29% (SEIR-fansy). For cumulative death counts, the SMAPE values are 4.74% (SEIR-fansy), 8.94% (eSIR) and 0.77% (ICM). Three models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and unreported) cumulative case counts as well. We compute underreporting factors as of October 31 and note that for cumulative cases, the SEIR-fansy model yields an underreporting factor of 7.25 and ICM model yields 4.54 for the same quantity. For total (sum of reported and unreported) cumulative deaths the SEIR-fansy model reports an underreporting factor of 2.97. On October 31, we observe 8.18 million cumulative reported cases, while the projections (in millions) from the baseline model are 8.71 (95% credible interval: 8.63-8.80), while eSIR yields 8.35 (7.19-9.60), SAPHIRE returns 8.17 (7.90-8.52) and SEIR-fansy projects 8.51 (8.18-8.85) million cases. Cumulative case projections from the eSIR model have the highest uncertainty in terms of width of 95% credible intervals, followed by those from SAPHIRE, the baseline model and finally SEIR-fansy. CONCLUSIONS: In this comparative paper, we describe five different models used to study the transmission dynamics of the SARS-Cov-2 virus in India. While simulation studies are the only gold standard way to compare the accuracy of the models, here we were uniquely poised to compare the projected case-counts against observed data on a test period. The largest variability across models is observed in predicting the "total" number of infections including reported and unreported cases (on which we have no validation data). The degree of under-reporting has been a major concern in India and is characterized in this report. Overall, the SEIR-fansy model appeared to be a good choice with publicly available R-package and desired flexibility plus accuracy.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Pandemics , Bayes Theorem , Communicable Disease Control/methods , Computer Simulation , Forecasting , Humans , India/epidemiology , Models, Statistical
8.
Sci Rep ; 11(1): 9748, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1218984

ABSTRACT

Susceptible-Exposed-Infected-Removed (SEIR)-type epidemiologic models, modeling unascertained infections latently, can predict unreported cases and deaths assuming perfect testing. We apply a method we developed to account for the high false negative rates of diagnostic RT-PCR tests for detecting an active SARS-CoV-2 infection in a classic SEIR model. The number of unascertained cases and false negatives being unobservable in a real study, population-based serosurveys can help validate model projections. Applying our method to training data from Delhi, India, during March 15-June 30, 2020, we estimate the underreporting factor for cases at 34-53 (deaths: 8-13) on July 10, 2020, largely consistent with the findings of the first round of serosurveys for Delhi (done during June 27-July 10, 2020) with an estimated 22.86% IgG antibody prevalence, yielding estimated underreporting factors of 30-42 for cases. Together, these imply approximately 96-98% cases in Delhi remained unreported (July 10, 2020). Updated calculations using training data during March 15-December 31, 2020 yield estimated underreporting factor for cases at 13-22 (deaths: 3-7) on January 23, 2021, which are again consistent with the latest (fifth) round of serosurveys for Delhi (done during January 15-23, 2021) with an estimated 56.13% IgG antibody prevalence, yielding an estimated range for the underreporting factor for cases at 17-21. Together, these updated estimates imply approximately 92-96% cases in Delhi remained unreported (January 23, 2021). Such model-based estimates, updated with latest data, provide a viable alternative to repeated resource-intensive serosurveys for tracking unreported cases and deaths and gauging the true extent of the pandemic.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19 Testing , Child , Child, Preschool , False Negative Reactions , Female , Humans , Immunoglobulin G/immunology , India/epidemiology , Male , SARS-CoV-2/immunology , Seroepidemiologic Studies , Young Adult
9.
J Clin Med ; 10(7)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154435

ABSTRACT

BACKGROUND: We performed a phenome-wide association study to identify pre-existing conditions related to Coronavirus disease 2019 (COVID-19) prognosis across the medical phenome and how they vary by race. METHODS: The study is comprised of 53,853 patients who were tested/diagnosed for COVID-19 between 10 March and 2 September 2020 at a large academic medical center. RESULTS: Pre-existing conditions strongly associated with hospitalization were renal failure, pulmonary heart disease, and respiratory failure. Hematopoietic conditions were associated with intensive care unit (ICU) admission/mortality and mental disorders were associated with mortality in non-Hispanic Whites. Circulatory system and genitourinary conditions were associated with ICU admission/mortality in non-Hispanic Blacks. CONCLUSIONS: Understanding pre-existing clinical diagnoses related to COVID-19 outcomes informs the need for targeted screening to support specific vulnerable populations to improve disease prevention and healthcare delivery.

10.
BMJ Open ; 10(12): e041778, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-972548

ABSTRACT

OBJECTIVES: To evaluate the effect of four-phase national lockdown from March 25 to May 31 in response to the COVID-19 pandemic in India and unmask the state-wise variations in terms of multiple public health metrics. DESIGN: Cohort study (daily time series of case counts). SETTING: Observational and population based. PARTICIPANTS: Confirmed COVID-19 cases nationally and across 20 states that accounted for >99% of the current cumulative case counts in India until 31 May 2020. EXPOSURE: Lockdown (non-medical intervention). MAIN OUTCOMES AND MEASURES: We illustrate the masking of state-level trends and highlight the variations across states by presenting evaluative evidence on some aspects of the COVID-19 outbreak: case fatality rates, doubling times of cases, effective reproduction numbers and the scale of testing. RESULTS: The estimated effective reproduction number R for India was 3.36 (95% CI 3.03 to 3.71) on 24 March, whereas the average of estimates from 25 May to 31 May stands at 1.27 (95% CI 1.26 to 1.28). Similarly, the estimated doubling time across India was at 3.56 days on 24 March, and the past 7-day average for the same on 31 May is 14.37 days. The average daily number of tests increased from 1717 (19-25 March) to 113 372 (25-31 May) while the test positivity rate increased from 2.1% to 4.2%, respectively. However, various states exhibit substantial departures from these national patterns. CONCLUSIONS: Patterns of change over lockdown periods indicate the lockdown has been partly effective in slowing the spread of the virus nationally. However, there exist large state-level variations and identifying these variations can help in both understanding the dynamics of the pandemic and formulating effective public health interventions. Our framework offers a holistic assessment of the pandemic across Indian states and union territories along with a set of interactive visualisation tools that are daily updated at covind19.org.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/mortality , Public Health/trends , Quarantine/statistics & numerical data , COVID-19/prevention & control , Humans , India/epidemiology
11.
JAMA Netw Open ; 3(10): e2025197, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-882319

ABSTRACT

Importance: Black patients are overrepresented in the number of COVID-19 infections, hospitalizations, and deaths in the US. Reasons for this disparity may be due to underlying comorbidities or sociodemographic factors that require further exploration. Objective: To systematically determine patient characteristics associated with racial/ethnic disparities in COVID-19 outcomes. Design, Setting, and Participants: This retrospective cohort study used comparative groups of patients tested or treated for COVID-19 at the University of Michigan from March 10, 2020, to April 22, 2020, with an outcome update through July 28, 2020. A group of randomly selected untested individuals were included for comparison. Examined factors included race/ethnicity, age, smoking, alcohol consumption, comorbidities, body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), and residential-level socioeconomic characteristics. Exposure: In-house polymerase chain reaction (PCR) tests, commercial antibody tests, nasopharynx or oropharynx PCR deployed by the Michigan Department of Health and Human Services and reverse transcription-PCR tests performed in external labs. Main Outcomes and Measures: The main outcomes were being tested for COVID-19, having test results positive for COVID-19 or being diagnosed with COVID-19, being hospitalized for COVID-19, requiring intensive care unit (ICU) admission for COVID-19, and COVID-19-related mortality (including inpatient and outpatient). Medical comorbidities were defined from the International Classification of Diseases, Ninth Revision, and International Classification of Diseases, Tenth Revision, codes and were aggregated into a comorbidity score. Associations with COVID-19 outcomes were examined using odds ratios (ORs). Results: Of 5698 patients tested for COVID-19 (mean [SD] age, 47.4 [20.9] years; 2167 [38.0%] men; mean [SD] BMI, 30.0 [8.0]), most were non-Hispanic White (3740 patients [65.6%]) or non-Hispanic Black (1058 patients [18.6%]). The comparison group included 7168 individuals who were not tested (mean [SD] age, 43.1 [24.1] years; 3257 [45.4%] men; mean [SD] BMI, 28.5 [7.1]). Among 1139 patients diagnosed with COVID-19, 492 (43.2%) were White and 442 (38.8%) were Black; 523 (45.9%) were hospitalized, 283 (24.7%) were admitted to the ICU, and 88 (7.7%) died. Adjusting for age, sex, socioeconomic status, and comorbidity score, Black patients were more likely to be hospitalized compared with White patients (OR, 1.72 [95% CI, 1.15-2.58]; P = .009). In addition to older age, male sex, and obesity, living in densely populated areas was associated with increased risk of hospitalization (OR, 1.10 [95% CI, 1.01-1.19]; P = .02). In the overall population, higher risk of hospitalization was also observed in patients with preexisting type 2 diabetes (OR, 1.82 [95% CI, 1.25-2.64]; P = .02) and kidney disease (OR, 2.87 [95% CI, 1.87-4.42]; P < .001). Compared with White patients, obesity was associated with higher risk of having test results positive for COVID-19 among Black patients (White: OR, 1.37 [95% CI, 1.01-1.84]; P = .04. Black: OR, 3.11 [95% CI, 1.64-5.90]; P < .001; P for interaction = .02). Having any cancer was associated with higher risk of positive COVID-19 test results for Black patients (OR, 1.82 [95% CI, 1.19-2.78]; P = .005) but not White patients (OR, 1.08 [95% CI, 0.84-1.40]; P = .53; P for interaction = .04). Overall comorbidity burden was associated with higher risk of hospitalization in White patients (OR, 1.30 [95% CI, 1.11-1.53]; P = .001) but not in Black patients (OR, 0.99 [95% CI, 0.83-1.17]; P = .88; P for interaction = .02), as was type 2 diabetes (White: OR, 2.59 [95% CI, 1.49-4.48]; P < .001; Black: OR, 1.17 [95% CI, 0.66-2.06]; P = .59; P for interaction = .046). No statistically significant racial differences were found in ICU admission and mortality based on adjusted analysis. Conclusions and Relevance: These findings suggest that preexisting type 2 diabetes or kidney diseases and living in high-population density areas were associated with higher risk for COVID-19 hospitalization. Associations of risk factors with COVID-19 outcomes differed by race.


Subject(s)
Black or African American , Coronavirus Infections/ethnology , Health Status Disparities , Hospitalization , Pneumonia, Viral/ethnology , White People , Adult , Aged , Betacoronavirus , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Intensive Care Units , Kidney Diseases/epidemiology , Male , Michigan/epidemiology , Middle Aged , Neoplasms/epidemiology , Obesity/epidemiology , Odds Ratio , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Population Density , Retrospective Studies , Risk Factors , SARS-CoV-2
12.
medRxiv ; 2020 Jun 14.
Article in English | MEDLINE | ID: covidwho-822577

ABSTRACT

Introduction India has been under four phases of a national lockdown from March 25 to May 31 in response to the COVID-19 pandemic. Unmasking the state-wise variation in the effect of the nationwide lockdown on the progression of the pandemic could inform dynamic policy interventions towards containment and mitigation. Methods Using data on confirmed COVID-19 cases across 20 states that accounted for more than 99% of the cumulative case counts in India till May 31, 2020, we illustrate the masking of state-level trends and highlight the variations across states by presenting evaluative evidence on some aspects of the COVID-19 outbreak: case-fatality rates, doubling times of cases, effective reproduction numbers, and the scale of testing. Results The estimated effective reproduction number R for India was 3.36 (95% confidence interval (CI): [3.03, 3.71]) on March 24, whereas the average of estimates from May 25 - May 31 stands at 1.27 (95% CI: [1.26, 1.28]). Similarly, the estimated doubling time across India was at 3.56 days on March 24, and the past 7-day average for the same on May 31 is 14.37 days. The average daily number of tests have increased from 1,717 (March 19-25) to 131,772 (May 25-31) with an estimated testing shortfall of 4.58 million tests nationally by May 31. However, various states exhibit substantial departures from these national patterns. Conclusions Patterns of change over lockdown periods indicate the lockdown has been effective in slowing the spread of the virus nationally. The COVID-19 outbreak in India displays large state-level variations and identifying these variations can help in both understanding the dynamics of the pandemic and formulating effective public health interventions. Our framework offers a holistic assessment of the pandemic across Indian states and union territories along with a set of interactive visualization tools that are daily updated at covind19.org.

13.
medRxiv ; 2020 Jul 29.
Article in English | MEDLINE | ID: covidwho-721055

ABSTRACT

Importance The diagnostic tests for COVID-19 have a high false negative rate, but not everyone with an initial negative result is re-tested. Michigan Medicine, being one of the primary regional centers accepting COVID-19 cases, provided an ideal setting for studying COVID-19 repeated testing patterns during the first wave of the pandemic. Objective To identify the characteristics of patients who underwent repeated testing for COVID-19 and determine if repeated testing was associated with patient characteristics and with downstream outcomes among positive cases. Design This cross-sectional study described the pattern of testing for COVID-19 at Michigan Medicine. The main hypothesis under consideration is whether patient characteristics differed between those tested once and those who underwent multiple tests. We then restrict our attention to those that had at least one positive test and study repeated testing patterns in patients with severe COVID-19 related outcomes (testing positive, hospitalization and ICU care). Setting Demographic and clinical characteristics, test results, and health outcomes for 15,920 patients presenting to Michigan Medicine between March 10 and June 4, 2020 for a diagnostic test for COVID-19 were collected from their electronic medical records on June 24, 2020. Data on the number and types of tests administered to a given patient, as well as the sequences of patient-specific test results were derived from records of patient laboratory results. Participants Anyone tested between March 10 and June 4, 2020 at Michigan Medicine with a diagnostic test for COVID-19 in their Electronic Health Records were included in our analysis. Exposures Comparison of repeated testing across patient demographics, clinical characteristics, and patient outcomes Main Outcomes and Measures Whether patients underwent repeated diagnostic testing for SARS CoV-2 in Michigan Medicine Results Between March 10th and June 4th, 19,540 tests were ordered for 15,920 patients, with most patients only tested once (13596, 85.4%) and never testing positive (14753, 92.7%). There were 5 patients who got tested 10 or more times and there were substantial variations in test results within a patient. After fully adjusting for patient and neighborhood socioeconomic status (NSES) and demographic characteristics, patients with circulatory diseases (OR: 1.42; 95% CI: (1.18, 1.72)), any cancer (OR: 1.14; 95% CI: (1.01, 1.29)), Type 2 diabetes (OR: 1.22; 95% CI: (1.06, 1.39)), kidney diseases (OR: 1.95; 95% CI: (1.71, 2.23)), and liver diseases (OR: 1.30; 95% CI: (1.11, 1.50)) were found to have higher odds of undergoing repeated testing when compared to those without. Additionally, as compared to non-Hispanic whites, non-Hispanic blacks were found to have higher odds (OR: 1.21; 95% CI: (1.03, 1.43)) of receiving additional testing. Females were found to have lower odds (OR: 0.86; 95% CI: (0.76, 0.96)) of receiving additional testing than males. Neighborhood poverty level also affected whether to receive additional testing. For 1% increase in proportion of population with annual income below the federal poverty level, the odds ratio of receiving repeated testing is 1.01 (OR: 1.01; 95% CI: (1.00, 1.01)). Focusing on only those 1167 patients with at least one positive result in their full testing history, patient age in years (OR: 1.01; 95% CI: (1.00, 1.03)), prior history of kidney diseases (OR: 2.15; 95% CI: (1.36, 3.41)) remained significantly different between patients who underwent repeated testing and those who did not. After adjusting for both patient demographic factors and NSES, hospitalization (OR: 7.44; 95% CI: (4.92, 11.41)) and ICU-level care (OR: 6.97; 95% CI: (4.48, 10.98)) were significantly associated with repeated testing. Of these 1167 patients, 306 got repeated testing and 1118 tests were done on these 306 patients, of which 810 (72.5%) were done during inpatient stays, substantiating that most repeated tests for test positive patients were done during hospitalization or ICU care. Additionally, using repeated testing data we estimate the "real world" false negative rate of the RT-PCR diagnostic test was 23.8% (95% CI: (19.5%, 28.5%)). Conclusions and Relevance This study sought to quantify the pattern of repeated testing for COVID-19 at Michigan Medicine. While most patients were tested once and received a negative result, a meaningful subset of patients (2324, 14.6% of the population who got tested) underwent multiple rounds of testing (5,944 tests were done in total on these 2324 patients, with an average of 2.6 tests per person), with 10 or more tests for five patients. Both hospitalizations and ICU care differed significantly between patients who underwent repeated testing versus those only tested once as expected. These results shed light on testing patterns and have important implications for understanding the variation of repeated testing results within and between patients.

14.
medRxiv ; 2020 Jun 18.
Article in English | MEDLINE | ID: covidwho-721051

ABSTRACT

IMPORTANCE: Blacks/African-Americans are overrepresented in the number of COVID-19 infections, hospitalizations and deaths. Reasons for this disparity have not been well-characterized but may be due to underlying comorbidities or sociodemographic factors. OBJECTIVE: To systematically determine patient characteristics associated with racial/ethnic disparities in COVID-19 outcomes. DESIGN: A retrospective cohort study with comparative control groups. SETTING: Patients tested for COVID-19 at University of Michigan Medicine from March 10, 2020 to April 22, 2020. PARTICIPANTS: 5,698 tested patients and two sets of comparison groups who were not tested for COVID-19: randomly selected unmatched controls (n = 7,211) and frequency-matched controls by race, age, and sex (n = 13,351). Main Outcomes and Measures: We identified factors associated with testing and testing positive for COVID-19, being hospitalized, requiring intensive care unit (ICU) admission, and mortality (in/out-patient during the time frame). Factors included race/ethnicity, age, smoking, alcohol consumption, healthcare utilization, and residential-level socioeconomic characteristics (SES; i.e., education, unemployment, population density, and poverty rate). Medical comorbidities were defined from the International Classification of Diseases (ICD) codes, and were aggregated into a comorbidity score. RESULTS: Of 5,698 patients, (median age, 47 years; 38% male; mean BMI, 30.1), the majority were non-Hispanic Whites (NHW, 59.2%) and non-Hispanic Black/African-Americans (NHAA, 17.2%). Among 1,119 diagnosed, there were 41.2% NHW and 37.4% NHAA; 44.8% hospitalized, 20.6% admitted to ICU, and 3.8% died. Adjusting for age, sex, and SES, NHAA were 1.66 times more likely to be hospitalized (95% CI, 1.09-2.52; P=.02), 1.52 times more likely to enter ICU (95% CI, 0.92-2.52; P=.10). In addition to older age, male sex and obesity, high population density neighborhood (OR, 1.27 associated with one SD change [95% CI, 1.20-1.76]; P=.02) was associated with hospitalization. Pre-existing kidney disease led to 2.55 times higher risk of hospitalization (95% CI, 1.62-4.02; P<.001) in the overall population and 11.9 times higher mortality risk in NHAA (95% CI, 2.2-64.7, P=.004). CONCLUSIONS AND RELEVANCE: Pre-existing type II diabetes/kidney diseases and living in high population density areas were associated with high risk for COVID-19 susceptibility and poor prognosis. Association of risk factors with COVID-19 outcomes differed by race. NHAA patients were disproportionately affected by obesity and kidney disease.

15.
medRxiv ; 2021 Feb 20.
Article in English | MEDLINE | ID: covidwho-721052

ABSTRACT

BACKGROUND: We perform a phenome-wide scan to identify pre-existing conditions related to COVID-19 susceptibility and prognosis across the medical phenome and how they vary by race. METHODS: The study is comprised of 53,853 patients who were tested/positive for COVID-19 between March 10 and September 2, 2020 at a large academic medical center. RESULTS: Pre-existing conditions strongly associated with hospitalization were renal failure, pulmonary heart disease, and respiratory failure. Hematopoietic conditions were associated with ICU admission/mortality and mental disorders were associated with mortality in non-Hispanic Whites. Circulatory system and genitourinary conditions were associated with ICU admission/mortality in non-Hispanic Blacks. CONCLUSIONS: Understanding pre-existing clinical diagnoses related to COVID-19 outcomes informs the need for targeted screening to support specific vulnerable populations to improve disease prevention and healthcare delivery.

16.
Harv Data Sci Rev ; 2020(Suppl 1)2020.
Article in English | MEDLINE | ID: covidwho-627047

ABSTRACT

With only 536 cases and 11 fatalities, India took the historic decision of a 21-day national lockdown on March 25. The lockdown was first extended to May 3 soon after the analysis of this paper was completed, and then to May 18 while this paper was being revised. In this paper, we use a Bayesian extension of the Susceptible-Infected-Removed (eSIR) model designed for intervention forecasting to study the short- and long-term impact of an initial 21-day lockdown on the total number of COVID-19 infections in India compared to other less severe non-pharmaceutical interventions. We compare effects of hypothetical durations of lockdown on reducing the number of active and new infections. We find that the lockdown, if implemented correctly, can reduce the total number of cases in the short term, and buy India invaluable time to prepare its healthcare and disease-monitoring system. Our analysis shows we need to have some measures of suppression in place after the lockdown for increased benefit (as measured by reduction in the number of cases). A longer lockdown between 42-56 days is preferable to substantially "flatten the curve" when compared to 21-28 days of lockdown. Our models focus solely on projecting the number of COVID-19 infections and, thus, inform policymakers about one aspect of this multi-faceted decision-making problem. We conclude with a discussion on the pivotal role of increased testing, reliable and transparent data, proper uncertainty quantification, accurate interpretation of forecasting models, reproducible data science methods and tools that can enable data-driven policymaking during a pandemic. Our software products are available at covind19.org.

SELECTION OF CITATIONS
SEARCH DETAIL